625=(x^2)+(x^2)-6x+9

Simple and best practice solution for 625=(x^2)+(x^2)-6x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 625=(x^2)+(x^2)-6x+9 equation:



625=(x^2)+(x^2)-6x+9
We move all terms to the left:
625-((x^2)+(x^2)-6x+9)=0
We get rid of parentheses
-x^2-x^2+6x-9+625=0
We add all the numbers together, and all the variables
-2x^2+6x+616=0
a = -2; b = 6; c = +616;
Δ = b2-4ac
Δ = 62-4·(-2)·616
Δ = 4964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4964}=\sqrt{4*1241}=\sqrt{4}*\sqrt{1241}=2\sqrt{1241}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{1241}}{2*-2}=\frac{-6-2\sqrt{1241}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{1241}}{2*-2}=\frac{-6+2\sqrt{1241}}{-4} $

See similar equations:

| 34=5b-7 | | -18+68=-5(x+5) | | 5x-13=-21(x-4) | | –6j−3j=–9j | | 3x-10=6x+5=4x+10 | | 16z+20-2z=-20+16z | | 3x-5(-1x+16)=-16 | | 4=12x=5x | | 2+12a=28 | | 134+x+x+54=180 | | 6+g=g | | 7+6n-8n=13 | | 6x+16=54-4x | | x/2-3=2-3/4x | | -2x+3=-1/3(6x-9) | | -2n-15=7(-2n+3) | | -3(8+8x)=-4(-4x+4) | | 9=3(w-11) | | 6k-18=k+22 | | -5x-(7-4x)=-2x(3x-4) | | 6+5x=x-9x2 | | 6x+3+7x=90 | | 15+1x=2.50 | | -3(g-4)=36 | | 3(x-4)=-32(4-x) | | 10x-6x=31-5 | | (3x-9)=180 | | 0.9w=6.3 | | 120+10x=250-8x | | x-3=7x3 | | 8(-2w-1)=21 | | -36+7x=-56-2(3x+4) |

Equations solver categories